Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Impossible? : surprising solutions to counterintuitive conundrums

Tytuł pełny:
Impossible? : surprising solutions to counterintuitive conundrums / Julian Havil
Autorzy:
Havil, Julian (1952- )
Współtwórcy:
Princeton University Press. Wydawca
Wydawca:
Princeton : Princeton University Press
Rok wydania:
[2008]
ISBN:
9781400829675
Zawartość:
Frontmatter -- Contents -- Acknowledgments -- Introduction -- Chapter 1. It’s Common Knowledge -- Chapter 2. Simpson’s Paradox -- Chapter 3. The Impossible Problem -- Chapter 4. Braess’s Paradox -- Chapter 5. The Power of Complex Numbers -- Chapter 6. Bucking the Odds -- Chapter 7. Cantor’s Paradise -- Chapter 8. Gamow–Stern Elevators -- Chapter 9. The Toss of a Coin -- Chapter 10. Wild-Card Poker -- Chapter 11. Two Series -- Chapter 12. Two Card Tricks -- Chapter 13. The Spin of a Needle -- Chapter 14. The Best Choice -- Chapter 15. The Power of Powers -- Chapter 16. Benford’s Law -- Chapter 17. Goodstein Sequences -- Chapter 18. The Banach–Tarski Paradox -- The Motifs -- Appendix -- Index
Cechy pliku:
Dane tekstowe
Wymagania systemowe:
Tryb dostępu: Internet
Temat:
Książki elektroniczne.
Matematyka - miscellanea.
Paradoksy - matematyka.
Rozwiązywanie problemu - miscellanea.
Dokument elektroniczny
propozycja biblioteki
LDR 04037cmm#a2200373#i#4500
001 0192805523988
003 KAT U, KAT 001
005 20221208204120.6
006 m####f###d#|||||||
007 cr#mn#---muauu
008 000000s2008####xxu####fo##d#|00|#0|eng#c
020 %a 9781400829675
040 %a KAT U/DO %c KAT U/DOs %d KAT U/DO
100 1 %a Havil, Julian %d (1952- ).
245 1 0 %a Impossible? : %b surprising solutions to counterintuitive conundrums / %c Julian Havil.
256 %a Dane tekstowe.
260 # %a Princeton : %b Princeton University Press, %c [2008].
336 %a Tekst %b txt %2 rdacontent
337 %a Komputer %b c %2 rdamedia
338 %a Dokument online %b cr %2 rdacarrier
505 0 # %t Frontmatter -- %t Contents -- %t Acknowledgments -- %t Introduction -- %t Chapter 1. It’s Common Knowledge -- %t Chapter 2. Simpson’s Paradox -- %t Chapter 3. The Impossible Problem -- %t Chapter 4. Braess’s Paradox -- %t Chapter 5. The Power of Complex Numbers -- %t Chapter 6. Bucking the Odds -- %t Chapter 7. Cantor’s Paradise -- %t Chapter 8. Gamow–Stern Elevators -- %t Chapter 9. The Toss of a Coin -- %t Chapter 10. Wild-Card Poker -- %t Chapter 11. Two Series -- %t Chapter 12. Two Card Tricks -- %t Chapter 13. The Spin of a Needle -- %t Chapter 14. The Best Choice -- %t Chapter 15. The Power of Powers -- %t Chapter 16. Benford’s Law -- %t Chapter 17. Goodstein Sequences -- %t Chapter 18. The Banach–Tarski Paradox -- %t The Motifs -- %t Appendix -- %t Index.
520 # %a In Nonplussed!, popular-math writer Julian Havil delighted readers with a mind-boggling array of implausible yet true mathematical paradoxes. Now Havil is back with Impossible?, another marvelous medley of the utterly confusing, profound, and unbelievable--and all of it mathematically irrefutable. Whenever Forty-second Street in New York is temporarily closed, traffic doesn't gridlock but flows more smoothly--why is that? Or consider that cities that build new roads can experience dramatic increases in traffic congestion--how is this possible? What does the game show Let's Make A Deal reveal about the unexpected hazards of decision-making? What can the game of cricket teach us about the surprising behavior of the law of averages? These are some of the counterintuitive mathematical occurrences that readers encounter in Impossible? Havil ventures further than ever into territory where intuition can lead one astray. He gathers entertaining problems from probability and statistics along with an eclectic variety of conundrums and puzzlers from other areas of mathematics, including classics of abstract math like the Banach-Tarski paradox. These problems range in difficulty from easy to highly challenging, yet they can be tackled by anyone with a background in calculus. And the fascinating history and personalities associated with many of the problems are included with their mathematical proofs. Impossible? will delight anyone who wants to have their reason thoroughly confounded in the most astonishing and unpredictable ways.
538 %a Tryb dostępu: Internet.
650 # %a Książki elektroniczne.
650 # %a Matematyka %v miscellanea.
650 # %a Paradoksy %x matematyka.
650 # %a Rozwiązywanie problemu %v miscellanea.
710 2 # %a Princeton University Press. %4 pbl
856 4 9 %u https://doi.org/10.1515/9781400829675 %z Dostęp do pełnego tekstu dokumentu z komputerów UŚ. %9 Link lokalny
856 4 9 %u http://han.bg.us.edu.pl/han/de-gruyter/https/princetonup.degruyter.com/view/title/507135 %z Dostęp do pełnego tekstu dokumentu z komputerów zlokalizowanych poza siecią UŚ poprzez system HAN. %9 Link lokalny
856 4 # %u https://integro.ciniba.edu.pl/integro/index.php?r=site/recorddetail&id=0192805523988 %z Rekord w katalogu OPAC WWW biblioteki %9 LinkOPAC
920 %a 978-1-4008-2967-5

In Nonplussed!, popular-math writer Julian Havil delighted readers with a mind-boggling array of implausible yet true mathematical paradoxes. Now Havil is back with Impossible?, another marvelous medley of the utterly confusing, profound, and unbelievable--and all of it mathematically irrefutable. Whenever Forty-second Street in New York is temporarily closed, traffic doesn't gridlock but flows more smoothly--why is that? Or consider that cities that build new roads can experience dramatic increases in traffic congestion--how is this possible? What does the game show Let's Make A Deal reveal about the unexpected hazards of decision-making? What can the game of cricket teach us about the surprising behavior of the law of averages? These are some of the counterintuitive mathematical occurrences that readers encounter in Impossible? Havil ventures further than ever into territory where intuition can lead one astray. He gathers entertaining problems from probability and statistics along with an eclectic variety of conundrums and puzzlers from other areas of mathematics, including classics of abstract math like the Banach-Tarski paradox. These problems range in difficulty from easy to highly challenging, yet they can be tackled by anyone with a background in calculus. And the fascinating history and personalities associated with many of the problems are included with their mathematical proofs. Impossible? will delight anyone who wants to have their reason thoroughly confounded in the most astonishing and unpredictable ways.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies

Prześlij opinię

Twoje opinie są dla nas bardzo ważne i mogą być niezwykle pomocne w pokazaniu nam, gdzie możemy dokonać ulepszeń. Bylibyśmy bardzo wdzięczni za poświęcenie kilku chwil na wypełnienie krótkiego formularza.

Formularz