%a Fearless symmetry : %b exposing the hidden patterns of numbers / %c Avner Ash and Robert Gross.
250
%a New edition with a new preface by the authors.
256
%a Dane tekstowe.
260
#
%a Princeton : %b Princeton University Press, %c [2008].
336
%a Tekst %b txt %2 rdacontent
337
%a Komputer %b c %2 rdamedia
338
%a Dokument online %b cr %2 rdacarrier
505
0
#
%t Frontmatter -- %t Contents -- %t Foreword -- %t Preface To The Paperback Edition -- %t Preface -- %t Acknowledgments -- %t Greek Alphabet -- %t Chapter 1. Representations -- %t Chapter 2. Groups -- %t Chapter 3. Permutations -- %t Chapter 4. Modular Arithmetic -- %t Chapter 5. Complex Numbers -- %t Chapter 6. Equations and Varieties -- %t Chapter 7. Quadratic Reciprocity -- %t Chapter 8. Galois Theory -- %t Chapter 9. Elliptic Curves -- %t Chapter 10. Matrices -- %t Chapter 11. Groups of Matrices -- %t Chapter 12. Group Representations -- %t Chapter 13. The Galois Group Of A Polynomial -- %t Chapter 14. The Restriction Morphism -- %t Chapter 15. The Greeks Had a Name for it -- %t Chapter 16. Frobenius -- %t Chapter 17. Reciprocity Laws -- %t Chapter 18. One- And Two-Dimensional Representations -- %t Chapter 19. Quadratic Reciprocity Revisited -- %t Chapter 20. A Machine for Making Galois Representations -- %t Chapter 21. A Last Look at Reciprocity -- %t Chapter 22. Fermat’s Last Theorem and Generalized Fermat Equations -- %t Chapter 23. Retrospect -- %t Bibliography -- %t Index.
520
8
%a Mathematicians solve equations, or try to. But sometimes the solutions are not as interesting as the beautiful symmetric patterns that lead to them. Written in a friendly style for a general audience, Fearless Symmetry is the first popular math book to discuss these elegant and mysterious patterns and the ingenious techniques mathematicians use to uncover them. Hidden symmetries were first discovered nearly two hundred years ago by French mathematician évariste Galois. They have been used extensively in the oldest and largest branch of mathematics--number theory--for such diverse applications as acoustics, radar, and codes and ciphers. They have also been employed in the study of Fibonacci numbers and to attack well-known problems such as Fermat's Last Theorem, Pythagorean Triples, and the ever-elusive Riemann Hypothesis. Mathematicians are still devising techniques for teasing out these mysterious patterns, and their uses are limited only by the imagination. The first popular book to address representation theory and reciprocity laws, Fearless Symmetry focuses on how mathematicians solve equations and prove theorems. It discusses rules of math and why they are just as important as those in any games one might play. The book starts with basic properties of integers and permutations and reaches current research in number theory. Along the way, it takes delightful historical and philosophical digressions. Required reading for all math buffs, the book will appeal to anyone curious about popular mathematics and its myriad contributions to everyday life.
538
%a Tryb dostępu: Internet.
650
#
%a Książki elektroniczne.
650
#
%a Teoria liczb.
700
1
#
%a Gross, Robert %d (1959- ).
856
4
9
%u https://doi.org/10.1515/9781400837779 %z Dostęp do pełnego tekstu dokumentu z komputerów UŚ. %9 Link lokalny
856
4
9
%u http://han.bg.us.edu.pl/han/de-gruyter/https/princetonup.degruyter.com/view/title/507147 %z Dostęp do pełnego tekstu dokumentu z komputerów zlokalizowanych poza siecią UŚ poprzez system HAN. %9 Link lokalny
856
4
#
%u https://integro.ciniba.edu.pl/integro/index.php?r=site/recorddetail&id=0192805527633 %z Rekord w katalogu OPAC WWW biblioteki %9 LinkOPAC
920
%a 978-1-4008-3777-9
Mathematicians solve equations, or try to. But sometimes the solutions are not as interesting as the beautiful symmetric patterns that lead to them. Written in a friendly style for a general audience, Fearless Symmetry is the first popular math book to discuss these elegant and mysterious patterns and the ingenious techniques mathematicians use to uncover them. Hidden symmetries were first discovered nearly two hundred years ago by French mathematician évariste Galois. They have been used extensively in the oldest and largest branch of mathematics--number theory--for such diverse applications as acoustics, radar, and codes and ciphers. They have also been employed in the study of Fibonacci numbers and to attack well-known problems such as Fermat's Last Theorem, Pythagorean Triples, and the ever-elusive Riemann Hypothesis. Mathematicians are still devising techniques for teasing out these mysterious patterns, and their uses are limited only by the imagination. The first popular book to address representation theory and reciprocity laws, Fearless Symmetry focuses on how mathematicians solve equations and prove theorems. It discusses rules of math and why they are just as important as those in any games one might play. The book starts with basic properties of integers and permutations and reaches current research in number theory. Along the way, it takes delightful historical and philosophical digressions. Required reading for all math buffs, the book will appeal to anyone curious about popular mathematics and its myriad contributions to everyday life.
Informacja
Anonimowy użytkownik nie może zamawiać i rezerwować dokumentów!
Ash, A. i Gross, R. 2008. Fearless symmetry : exposing the hidden patterns of numbers. , 2008.
APA (American Psychological Association, wydanie 7)
Ash, A., & Gross, R. (2008). Fearless symmetry : exposing the hidden patterns of numbers. Princeton University Press.
Chicago (wydanie 17)
Ash, Avner, i Robert Gross. 2008. „Fearless symmetry : exposing the hidden patterns of numbers”. Princeton: Princeton University Press.
MLA (Modern Language Association, wydanie 9)
Ash, Avner, i Robert Gross. Fearless symmetry : exposing the hidden patterns of numbers. Princeton University Press, 2008.
ISO 690
ASH, Avner i GROSS, Robert. Fearless symmetry : exposing the hidden patterns of numbers. 2008. Princeton : Princeton University Press. ISBN 9781400837779.
IEEE
A. Ash i R. Gross, „Fearless symmetry : exposing the hidden patterns of numbers”. Princeton University Press, Princeton, 2008.
APS (American Psychological Society)
Ash A, Gross R. Fearless symmetry : exposing the hidden patterns of numbers. Princeton University Press: 2008.
APS (American Physics Society)
A. Ash i R. Gross, (2008).
CSE (Council of Science Editors)
Ash A, Gross R. Fearless symmetry : exposing the hidden patterns of numbers. 2008.
Vancouver
Ash A, Gross R. Fearless symmetry : exposing the hidden patterns of numbers. Princeton: Princeton University Press; 2008.
AMA (American Medical Association)
Ash A, Gross R. Fearless symmetry : exposing the hidden patterns of numbers. Published online 2008.
wyszukiwanie rozszerzone - obejmuje warunek w różnych formach ze względu na inne końcówki fleksyjne (stemming), synonimy, brak znaków diakrytycznych itp.
wyszukiwanie precyzyjne - obejmuje warunek tylko w podanej formie. Nie uwzględnia się tutaj innych końcówek fleksyjnych, synonimów, braku znaków diakrytycznych itp.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Prześlij opinię
Twoje opinie są dla nas bardzo ważne i mogą być niezwykle pomocne w pokazaniu nam, gdzie możemy dokonać ulepszeń. Bylibyśmy bardzo wdzięczni za poświęcenie kilku chwil na wypełnienie krótkiego formularza.