Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "naive Bayes classifier" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Learning the naive Bayes classifier with optimization models
Autorzy:
Taheri, S.
Mammadov, M.
Data publikacji:
2013
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
Bayesian networks
naive Bayes classifier
optimization
discretization
sieci bayesowskie
naiwny klasyfikator Bayesa
optymalizacja
dyskretyzacja
Pokaż więcej
Źródło:
International Journal of Applied Mathematics and Computer Science; 2013, 23, 4; 787-795
1641-876X
2083-8492
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cloud-based sentiment analysis for measuring customer satisfaction in the Moroccan banking sector using Naïve Bayes and Stanford NLP
Autorzy:
Riadsolh, Anouar
Lasri, Imane
ElBelkacemi, Mourad
Data publikacji:
2020
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
Big Data processing
Apache Spark
Apache Kafka
real-time text processing
sentiment analysis
Stanford core NLP
Naïve Bayes classifier
Pokaż więcej
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2020, 14, 4; 64-71
1897-8649
2080-2145
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Attribute selection for stroke prediction
Autorzy:
Zdrodowska, Małgorzata
Data publikacji:
2019
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
data mining
classifier
J48 (C4.5)
CART
PART
naive Bayes classifier
random forest
support vector machine
multilayer perceptron
haemorrhagic stroke
ischemic stroke
Pokaż więcej
Źródło:
Acta Mechanica et Automatica; 2019, 13, 3; 200-204
1898-4088
2300-5319
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sentiment Classification of Bank Clients’ Reviews Written in the Polish Language
Analiza sentymentu na podstawie polskojęzycznych recenzji klientów banku
Autorzy:
Idczak, Adam Piotr
Data publikacji:
2021-06-30
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
analiza sentymentu
klasyfikacja dokumentów
textmining
regresja logistyczna
naiwny klasyfikator Bayesa
sentiment analysis
opinion mining
text classification
text mining
logistic regression
naive Bayes classifier
Pokaż więcej
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2021, 2, 353; 43-56
0208-6018
2353-7663
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Propozycja mieszanego przetwarzania półstrukturalnego modelu opisu zdarzeń z akcji ratowniczo-gaśniczych Państwowej Straży Pożarnej PSP3
Proposition of hybrid process model semi structured description of event from fire services rescues operation
Autorzy:
Mirończuk, M.
Maciak, T.
Data publikacji:
2013
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
eksploracja tekstu
klasyfikator Bayesa
naiwny klasyfikator Bayesa
ontologia służb ratowniczych
reprezentacja meldunków
reprezentacja przypadków zdarzeń
reprezentacja tekstu
wnioskowanie na podstawie przypadków
Bayes classifier
casebased reasoning
naive Bayes classifier
ontology for rescue service
representation of reports
text mining
text representation
Pokaż więcej
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2013, 1; 95-106
1895-8443
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
New algorithm for determining the number of features for the effective sentiment-classification of text documents
Nowy algorytm ustalania liczby zmiennych potrzebnych do klasyfikacji dokumentów tekstowych ze względu na ich wydźwięk emocjonalny
Autorzy:
Idczak, Adam
Korzeniewski, Jerzy
Data publikacji:
2023-05-31
Wydawca:
Główny Urząd Statystyczny
Tematy:
sentiment analysis
document sentiment classification
text mining
logistic regression
naive Bayes classifier
feature selection
correlation
analiza sentymentu
klasyfikacja dokumentów ze względu na wydźwięk emocjonalny
eksploracja tekstu
regresja logistyczna
naiwny klasyfikator Bayesa
dobór cech
korelacja
Pokaż więcej
Źródło:
Wiadomości Statystyczne. The Polish Statistician; 2023, 68, 5; 40-57
0043-518X
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies

    Prześlij opinię

    Twoje opinie są dla nas bardzo ważne i mogą być niezwykle pomocne w pokazaniu nam, gdzie możemy dokonać ulepszeń. Bylibyśmy bardzo wdzięczni za poświęcenie kilku chwil na wypełnienie krótkiego formularza.

    Formularz