Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "activation function" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Forecasting economic and financial indicators by supply of deep and recovery neural networks
Autorzy:
Boyko, N.
Ivanets, A.
Bosik, M.
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Oddział w Lublinie PAN
Tematy:
neural network
deep
recurrent
activation function
feedforward
neuron
hidden layer
stock price prediction
Pokaż więcej
Źródło:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes; 2018, 7, 2; 3-8
2084-5715
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Heuristic analysis in the process of detecting serial offenders, part two - Victimology and Crime Scene Reconstruction through the lenses of Abductive Reasoning
Autorzy:
Markiewicz, Włodzimierz
Data publikacji:
2021-12
Wydawca:
Towarzystwo Wiedzy Powszechnej w Szczecinie
Tematy:
Victimology
victim theory
crime scene reconstruction
Konolidge’s abductive reasoning
AI
supervised learning process
neural network
activation function
Pokaż więcej
Źródło:
Edukacja Humanistyczna; 2021, 2, 45; 65-77
1507-4943
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of Neural Networksin the Tests of Hand Grenade Fuses
Zastosowanie sieci neuronowych w badaniach zapalników do granatów ręcznych
Autorzy:
Ampuła, Dariusz
Data publikacji:
2019
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
artificial intelligence
neural networks
activation function
hidden neurons
fuse
sztuczna inteligencja
sieci neuronowe
funkcja aktywacji
neurony ukryte
zapalnik
Pokaż więcej
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2019, 68, 1; 197-212
1234-5865
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of convolutional neuron network for image processing and interpretation
Zastosowanie konwolucyjnych sieci neuronowych do przetwarzania i interpretacji obrazów
Autorzy:
Pałczyński, Krzysztof
Data publikacji:
2020
Wydawca:
Politechnika Bydgoska im. Jana i Jędrzeja Śniadeckich. Wydawnictwo PB
Tematy:
convolutional neural network
image processing
filtration
convolution
activation function
loss function
softmax
cross entropy
L2
Dropout
stochastic gradient drop
konwolucyjne sieci neuronowe
przetwarzanie obrazów
filtracja
splot
funkcja aktywacji
funkcja straty
entropia krzyżowa
stochastyczny spadek gradientu
Pokaż więcej
Źródło:
Zeszyty Naukowe. Telekomunikacja i Elektronika / Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy; 2019, 23; 5-12
1899-0088
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies

    Prześlij opinię

    Twoje opinie są dla nas bardzo ważne i mogą być niezwykle pomocne w pokazaniu nam, gdzie możemy dokonać ulepszeń. Bylibyśmy bardzo wdzięczni za poświęcenie kilku chwil na wypełnienie krótkiego formularza.

    Formularz